
Abstract. Relative phase was recently suggested as a key
variable for the dynamical modeling of coordination in
both quadruped locomotion and undulation swimming
in ®sh. Relative phase analysis has not yet been applied,
however, to the behavior of intact, freely moving
animals, but only to simpli®ed situations involving
restrained animals and humans. In order to investigate
relative phase under free movement conditions, we
®lmed free locomotion of ferrets (Mustella putorius)
from below (through a glass ¯oor) and measured the
lateral bending along the head, torso, and tail, and the
location of the four paws. We introduced an algorithm
which extracts the phase (and thus also the relative
phase) even when the movements were neither periodic
nor symmetric. Our results show that relative phases
between segments have preferred values, which are
relatively independent of the amplitude, duration, and
asymmetry of the movement. In particular, both walking
and turning can be explained as modulations of a single
pattern: a cephalo-caudal, traveling wave of lateral
movement with a wavelength of approximately one
length of the body. The relative phase between move-
ments of adjacent segments is similar when the body is in
S shape (i.e., when walking forward), or C shape (i.e.,
when turning). The movements of the paws in the
horizontal plane can also be considered as part of this
traveling wave. Our ®ndings suggest that the concept of
traveling waves of lateral bending, as found in the
locomotion of undulating ®sh, can be generalized in two
ways: (i) by considering the axis around which the
movement is centered, it applies not only to forward
locomotion, but also to turning; (ii) by incorporating the
position of the paws, it applies also to the movement of
quadrupeds. Our ®ndings suggest that the relative phase,
once it is generalized to asymmetric and quasi-periodic
movement, is suitable for modeling coordination pat-
terns under free movement conditions.

1 Introduction

In recent years, patterns of interlimb coordination,
particularly the gaits of quadruped locomotion, have
been modeled as dynamical systems of coupled oscilla-
tors. In these models, the relative phase between the
movements of the limbs was shown to be a good
collective variable, i.e., there is a particular value of it
(e.g., half a cycle between the forelegs during trot) which
is stabilized and thus can be considered a point attractor.
Relative phase models are useful because they explain
additional phenomena in quadruped locomotion, such
as sudden bifurcations of the relative phase from one
stable value to another when the gait is changed (for
review, see Schoner et al. 1990; Turvey 1990; Collins and
Stewart 1993; Kelso 1995).

Relative phase (/rel) is also considered as a key vari-
able in the undulation pattern of swimming in eel-like
®sh. The undulation is coordinated by a wave of lateral
bending that travels from head to tail. This traveling
wave has a wavelength of approximately one length of
the body (i.e., the body assumes an S-shape while
swimming because one wave is present at all times). This
wavelength is kept constant during a wide range of un-
dulation frequencies (Grillner and Kashin 1976). It fol-
lows that /rel (or the ``phase lag'') between succeeding
segments of the body is stabilized to a value of some small
fraction of a cycle, so that the sum of the /rel's along all
the segments of the body equals (approximately) one
cycle. The neural mechanism in the spinal cord that un-
derlies this pattern has been intensively investigated in
the lamprey (Petromyzon sp.), which is currently the most
important experimental model for the structure and
function of the spinal cord. Models for explaining the
traveling wave pattern are now well-developed, both on
the neural level (Grillner et al. 1995; Jung et al. 1996) and
on the more abstract level of coordination dynamics
(Kopell 1988; Rand et al. 1988; Yuasa and Ito 1990).

/rel is thus perceived as a key variable of locomotor
patterns in both quadrupeds and ®sh. Nevertheless,
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when trying to apply /rel to understand locomotor
patterns in free (unrestrained) vertebrate behavior,
some methodological di�culties arise. Most of the
existing experiments and models employ a simpli®ed
situation in which the animal locomotes at a ®xed (or
gradually changing) speed, so that the resulting pat-
tern is strictly periodic. Most of them also restrain (or
assume) the animal to locomote on a straight line,
which means that the resulting pattern is left-right
symmetric (but see Ekeberg 1993). Owing to these
simpli®cations, the movement of each limb/segment
can be adequately described by a single variable: its
phase. The phase can be measured by only one or
two particular events in the cycle namely the peaks of
the limb/segment displacement. Between these peaks,
the phase is only assumed by interpolation. The
problem is how to measure phase in real life situa-
tions, in which movement is often asymmetric and
aperiodic.

A graphical representation of this problem is shown
in Fig. 1. Column A represents the simpli®ed situation:
the movement of each segment of the body (top) is as-
sumed to be periodic and left/right symmetric. The time-
series of the angle of one segment relative to the other
(middle) is thus centered on zero (� straight). The pe-
riod T, measured as the time lapse between two peaks,
and the amplitude A are constant (locally at least) and
thus can be ignored. The phase is de®ned as 0 � 1 at

the peaks, and is computed by interpolation for any
other instant of the cycle as the proportion of T.

The phase-plane (bottom) plots the ®rst derivative of
the angle (i.e., the angular velocity) vs the angle itself. In
this representation, every cycle is plotted as a loop (a
circle if the time-series is sinusoid). If the movement is
symmetrical, the loop is centered at the origin of axes,
and the phase F at any point can be represented by the
angle between a line from this point to the origin of axes,
and the x-axis. After computing the phase for each
movement, /rel is the phase di�erence between two
concurrent movements (e.g., Schoner et al. 1990; Kelso
1995).

While the assumptions of periodicity and symmetry
considerably simplify the treatment of /rel, they also
make it impossible to apply it directly to free locomotor
behavior. When a ®sh or a mammal turns, for example,
each segment of the body bends (relative to the more
posterior segment) to the side of the turn and then
straightens again; in this case (column B, Fig. 1) the
time lapse between peaks cannot be used, and the
movement is not symmetric. This case, however, can be
thought of as a single cycle of a periodic movement
(Fig. 1B, middle, dashed line) centered around angle C
(``center of oscillation''), which in this case is di�erent
from zero. In the phase-plane (Fig. 1B, bottom), this
situation is plotted as a loop which is o�-centered to
one side by C, and the phase F at any moment is the

Fig. 1. The conventional (column A) and generalized (columns B, C) concepts of phase in a time series. Top row shows how the angle between two
segments of the body changes with time (denoted by the time axis of the corresponding graph below it, in the second row).Middle row shows the
angle time-series. Third row shows the angle phase-plane (angle vs its ®rst derivative or angular velocity). Column A shows the common method
for measuring the phase in a periodic, symmetric time-series: The period T is the time lapse between peaks, and the phase of every instant during
that time is measured in fractions of T (analogous to the angle F in the phase plane). Column B represents a situation of bending and
straightening, where the time-series is neither symmetric nor periodic. This situation can be modeled as a local periodic movement (dashed line),
centered on a ``center of oscillation'' C. The justi®cation for this modeling is clearer in the phase-plane (bottom). A discrete movement (column C)
is modeled in the same way as half a cycle. See text for further explanation
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angle created with the loop's center (C, 0) on the hor-
izontal axis.

Finally, many of the movements in free behavior are
not periodic at all, but discrete (Fig. 1C, top). Such
movements can be referred to as half a cycle of a peri-
odic movement (Fig. 1C, middle, dashed line) and are
plotted in the phase-plane as half a loop, starting and
ending on the horizontal axis, in which F at every mo-
ment can still be computed as in the previous case. The
simpli®ed situation in Fig. 1A can thus be conceived of
as a particular case of the more general concept of
phase, in which C, A, and T are not necessarily constant
and therefore cannot be neglected.

In this study, we tested the hypothesis that coordi-
nation patterns of free behavior are also characterized
by the stability of /rel. To test this hypothesis, we de-
veloped an algorithm, based on the concept outlined
above, to compute phase during free movement. The
algorithm takes as data the time series of any variable
(e.g., the angle between two segments) and models every
instant of it as part of a local periodic movement, as
suggested by the dashed lines in Fig. 1B and C. The
value of the variable at this speci®c instant can thus be
separated into four components: The parameters F, C,
A, and T of that periodic movement. The algorithm
(hence referred to as the FCAT algorithm) can compute
these four components at any instant of the movement.
/rel of any two concurrent movement is, as mentioned
before, their phase di�erence.

As an experimental model for investigating /rel dur-
ing free movement, we used ferrets (Mustella putorius)
®lmed from below through a glass ¯oor. Figure 2 shows
six frames from a free movement sequence of a ferret.
Ferrets display a rich repertoire of motor patterns in-

volving a considerable lateral component: lateral bend-
ing while walking, turning in place or while walking, and
scanning movement with head and neck. We will ex-
amine the hypothesis that this repertoire is executed with
a preferred /rel, which is relatively independent of the
other components C, A, and T of the movement.

If /rel is indeed stabilized to a speci®c value or values,
it will be of interest to determine these values. As men-
tioned before, the traveling wave pattern of undulation
swimming in ®sh is created by a slight lag of the more
caudal segment relative to the more anterior (/rel is a
small fraction of a cycle, but di�erent from zero). In
tetrapoda (quadruped vertebrates), in contrast, lateral
movement during walking is commonly thought to in-
volve a standing wave. In a standing wave, there is no
lag of the caudal segment (/rel � 0 cycles), except over
particular locations along the body (the ``nodes'' of the
wave) in which /rel is changed by half a cycle. The no-
tion that walking in tetrapoda involves a standing wave
is based on studies in some urodela (salamanders, newts,
etc.) and lizards (Cohen 1988), but to our knowledge has
never been examined in mammals. Our experimental
setup made it possible to examine the type of wave
characterizing the ferret. We also argue that our novel
method for evaluating the wave type, based on direct
measurement of the phase and of /rel, is more reliable
than the usual method, which is based on the lateral
displacement of points on the body.

The FCAT algorithm also allowed us to test the hy-
pothesis that turning and forward walking are modula-
tions of the same pattern in vertebrates. When a
vertebrate turns, it usually starts with lateral bending of
the head to the side of the turn. The other segments of
the body then join in a cephalocaudal order. Concomi-

Fig. 2. Six selected frames from a
120-frame (4.80-s) sequence of free
movement of a ferret. The move-
ment was ®lmed from below and
measured by using 10 points on the
animal's body (open circles), which
de®ne 7 ``segments'': body segments
(from left to right in, e.g., frame 25):
Head, Neck, Chest, Pelvis, and Tail;
and Forelegs and Hindlegs, which
form two ``virtual'' segments, con-
necting the forepaws and hindpaws,
respectively. Coordinate frame of
the observation platform is the
same in all frames, given in centi-
meters from a speci®c origin point
common to all. The animal walked
forward, stopped, made half a turn
to the left, and then turned and
walked to the right
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tantly, the head straightens again, and straightening also
travels cephalocaudally along the body (Gray 1933;
Golani 1976; Jayne and Lauder 1993; Ullen et al. 1993).
In this paper we test the hypothesis that in ferrets this
bending and straightening travels along the body at a
®xed phase lag, similar to that of forward walking. We
also examine whether this is true for the lamprey, by
reinterpreting data from the literature. If true, this could
mean that a turn is simply an asymmetric forward lo-
comotion, and that it can be executed by modulating
only one parameter, the ``center of oscillation'' C of the
FCAT algorithm.

During presentation and discussion of the results, we
stress the point that, as long as the components C, A,
and T are taken into consideration, treating coordina-
tion patterns of free behavior in terms of /rel between
segments is useful even when the movement is not
strictly periodic and regular.

2 Methods

2.1 Experimental animals

Ferrets had two advantages for the present study: (i) their elon-
gated body, especially in females, allows for a more accurate
measurement of horizontal bending; (ii) they exhibit a high level of
activity in an unfamiliar area, thus providing su�cient data for
analysis. Four adult females weighing 500±800 g were used, all of
the same strain, bred at the animal facilities of the Hebrew Uni-
versity.

2.2 Filming

Filming was done from below through a glass ¯oor. This method
has been used in previous work with laboratory rats (e.g., Eilam
and Golani 1988; Kafka® et al. 1996) and has been found to fa-
cilitate an accurate evaluation of the horizontal directions of head,
trunk and tail, and of the direction and timing of stepping in all
four legs. The observation platform was a 1.8 ´ 1.8 m ¯at glass
plate, placed horizontally about 2 m above the ground. A large
mirror placed under the glass ¯oor, tilted at 45° to it, allowed
videotaping of a bottom view of the animals. The lower face of the
glass was covered with a square grid of 10 mm colored stickers,
16 cm apart, which provided a reference coordinate frame for
measurement (see Sects. 2.3 and 2.4). The center of the platform
contained a cross-shaped plastic partition, 40 cm high and 100 cm
long from edge to edge. This partition prevented the animal from
seeing the entire platform at once, thus encouraging it to explore
continuously and not spend all of its time at the edges.

Each animal was marked along the midline of the ventral side
with four colored 10 mm stickers: (i) below the posterior edge of
the mandibula; (ii) on the anterior edge of the sternum; (iii) on the
posterior edge of the sternum; (iv) 10 mm in front of the pubis. The
four paws were painted with fast-drying, non-toxic correction ¯uid.
Each of the animals was placed on the observation platform and
®lmed for 20 min. All of the animals were naive and tested once.
The platform was washed with detergent before each session.

All animals performed varied and intensive locomotor behavior
throughout most of the 20-min ®lming period. Activity always
started immediately after introducing the animal into the set-up,
and no fear reactions due to the glass transparency were observed.

Filming was performed with a Super VHS video camera, using
a 1/250-s shutter speed for accurate recording of fast movements.
In order to obtain as large an image as possible, we zoomed in on

the animal with the tripod-mounted camera, and followed it as it
moved around on the platform. The video ®lms were time-coded
(hour, minute, second, and frame).

2.3 Data acquisition

Sequences for measurement were selected from the videotapes by
®rst choosing a randomly sampled frame out of the 20-min ®lm and
then selecting the next nearest sequence which ®tted all the fol-
lowing criteria: (i) the animal had been moving for at least 2 s; (ii)
periods of immobility within the sequence lasted for no more than
0.75 s; (iii) there were no large vertical and rotational (``log-roll-
ing'') movements in the sequence; (iv) the markers were not hidden
for most of the time (see below). The total number of sequences
measured per animal was 14, 12, 15, and 16, and the total duration
per animal was 61, 48, 60, and 61 s. Since free behavior is typically
intermittent, most sequences lasted for 3±7 s.

Measurement was performed with a super-VHS videotape at a
rate of 25 frame/s. Initially, a rate of 50 frame/s was also used, but
it was found that the higher time resolution was not needed. Data
acquisition was performed with an interactive (automatic/manual)
tracking program developed by us, which recognizes targets by
correlating current to previous pixel values of the same target
(correlation tracking). The screen coordinates of 10 points were
measured by the tracking program in each frame: the four stickers
mentioned in the previous section, the tip of the snout, the tip of the
tail, and the centers of the four paws. In addition, in each frame the
tracking system measured three points, arranged in a straight angle,
of the grid marked on the observation platform. These points were
used as a reference frame for measurement (see also Sect. 2.4).
Depending on the observation conditions, tracking was performed
either automatically or manually.

If the target was hidden for one or two frames, its coordinates
in these frames were computed by linear interpolation. If the target
was hidden for more than two frames, its location was determined
manually by the user, taking into account the visible body parts
and the location of the target in nearby frames. Sequences in which
at least 1 of the 13 points was hidden for more than 10% of the
time were excluded from measurement.

The average accuracy of measurement was evaluated by mea-
suring the same sequence by di�erent users, by the same user at
di�erent times, or by automatic vs manual tracking. This amounted
to about �3 pixels in screen coordinates, which corresponds to
about �0.4 cm in space coordinates. Thus, the accuracy of mea-
suring the angle between segments (see Fig. 2) was �4° to �8°,
depending on the segment's length. The head was the shortest
segment measured (about 5 cm long), and the range of its move-
ment was also the smallest (�45°), which means that the precision
of measuring the head angle was the lowest.

2.4 Data processing methods

In order to compensate for the movement of the camera, we ®rst
computed the coordinates of the measured points in the absolute
frame of reference. This was done by a coordinate transformation,
using the three grid points measured o� the observation platform
(see Sects. 2.2 and 2.3) as reference. From the absolute coordinates,
we computed the angles between the segments, the velocities, the
segment absolute directions, etc. An animation of the movement
was also computed from the data (six frames sampled from such a
video clip are presented in Fig. 2).

It is interesting to note that although our animated ferret is
quite schematic, being composed of only 10 points, it appears lively
and natural once it is moving. This suggests that 10 two-dimen-
sional coordinates (i.e., 20 degrees of freedom) would be su�cient
for formulating the coordination patterns which are recognized
subjectively by ``experienced observers'' (Beer 1980; and see dis-
cussion in Sect. 4.4).
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3 Results

3.1 General properties of free locomotor behavior
of ferrets

The observed behavior was varied and complex even
after excluding movements with considerable vertical or
rotational components. The behavior included scanning
movements with the head and neck, tight and wide
turns, forward walking, starts and stops, and complex
simultaneous combinations of the above. A diagonal
gait was not always maintained, mainly due to turning.
In particular, hindleg stepping was omitted during tight
turns. When the animal started a turn from a standing
position, it stepped ®rst either with the inside or outside
foreleg, with no apparent correlation to any property of
the turn. In summary, free behavior cannot be decom-
posed in a trivial way into stereotyped components such
as ``forward walking'' and ``turning''.

3.2 Computation of /rel

To compute /rel, we divided the ferret into seven
segments (Fig. 2): Five segments of the body ± head,
neck, chest, pelvis, and tail (seen, for example, from the
top downward in the last frame in Fig. 2) ± and the
forelegs and hindlegs, which are considered as two
``virtual'' segments created by connecting the forepaws
together and the hindpaws together (seen as crossing the
trunk in Fig. 2); h, n, c, and p denote the angles between

head and neck, between neck and chest, between chest
and pelvis, and between pelvis and tail, respectively; �
denotes the angles between forelegs and chest, and hh
denotes the angles between hindlegs and pelvis. The
angles h, n, c, and p between the segments of the trunk
are de®ned as zero when the two segments are in line,
while the angles � and hh of the legs are de®ned as zero
when they are orthogonal to the chest or pelvis. Thus,
when the ferret stands in a natural and symmetrical
position, all angles equal zero.

Figure 3 (top) shows an example of a time series of
one angle from the data (represented by the dots), as
measured 25 times (frames)/s. We used the FCAT al-
gorithm in order to compute the phase at any frame n,
by modeling it as part of a local periodic movement, and
computing the coe�cients (including the phase) of this
periodic movement (see dashed lines in Fig. 1B, C). For
this, the FCAT algorithm considered the moving ``time
window'' centered around frame n and 2k+1 wide: [n)k,
n)k+1; � � � ; n,n+1; � � � ; n+k], and ®tted the data within
this window with a cosine curve (see examples in Fig. 4).
The ®t was done by least-square optimizing of C, A, T,
and F, the four parameters in the cosine equation:

y�i� � C � A� cos
2p
T

iÿ 2pU

� �
�1�

where:
i is the index of the frames in the time window,

moving from )k to+k and equaling 0 at the considered
frame n;

Fig. 3. Decomposition of an angle
time-series into amplitude A, center
of oscillation C, period T, and
phase F. The top graph shows an
original time-series of the foreleg
angle (black dots). In the middle
graph the data (bold line) are shown
together with the computed center
of oscillation C (gray line) and
amplitude A (dashed line), both
measured in degrees. The bottom
graph shows the computed period T
(line, measured in frames) and
phase (black dots, measured in
cycles). In the bottom graph, the
thickness of the line (in the case of
T) and the dot size (in the case of
F) represent the amplitude. This
mode of representation highlights
the fact that both F and T have no
meaning when the amplitude ap-
proaches zero (i.e., immobility is
represented by an almost invisible
line or dots). From the computed
F, A, C, and T, an estimation of the
original angle can be computed.
The estimated angle is shown in
the top graph (line) together with
the original data (dots)
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y(i) is the estimated value of the angle at frame i
(which is to ®t the data);

C is the (local) center of oscillation, measured in de-
grees, i.e., the value around which the data oscillate in
the time window considered. In graphical terms, it is the
vertical displacement of the cosine curve in Fig. 4;

A is the (local) amplitude of oscillation, measured in
degrees, around the center C (i.e., the vertical distance of
the peaks of the cosine curve from C);

T is the local period, measured in frames, of one cycle
in the time window (horizontal length of one cycle of the
cosine curve);

F is the phase, measured in units (from 0 to 1) of the
period T (i.e., the horizontal displacement of the cosine
curve, as a fraction of one cycle).

Note that (1) is the standard equation for pure
harmonic (i.e., sinusoid) motion. Six examples of time
windows, with the best-®t curves generated by the
FCAT algorithm, are shown in Fig. 4. The data point
at the center of each window (i � 0) is the frame n that
has been decomposed by the algorithm into its four
components.

As the examples in Fig. 4 show, the shape of the angle
time series was not strictly sinusoidal. The time series of
the two angles of the legs, � and hh, were more ``square''
in shape (see Fig. 4B,D), because when both forelegs (or
both hindlegs) were on the ground, the angle change was
only due to the movement of the chest (or of the pelvis),
a change which is relatively small in comparison to the
change when a leg is o� the ground. The time series of
the body angles were more ``saw-like'', and occasionally
had a small deceleration near the middle of the move-
ment (Fig. 4A,C). The reason for this is not clear, but
could be due to a vertical component of the movement.
In order to correct our model for these ``deformations''
of the curve's shape, we used a deformation function D
with a ``deformation parameter'' b:

D�x; b� � x� b sin�px�; 0 � x � 1 �2�

When this function is applied to a variable x that
oscillates sinusoidally, it yields a more ``square'' oscil-
lation with b slightly larger than 0 and a more ``saw-
like'' oscillation with b slightly smaller than 0. When D is

applied to the cosine term in (1), we obtain its ``de-
formed'' version:

y�i� � C � A� D cos
2p
T

iÿ 2pU

� �
; b

� �
�3�

We therefore actually used (3), which ®ts the data with a
saw-like oscillation (for b<0) or square oscillation (for
b>0) rather than a sinusoidal oscillation. We used ®xed
values of b � 0.2 for leg angles and b � )0.25 for body
angles, since these values seemed to yield a good ®t for
the data (see again the data points and the ®tted curves
in the examples in Fig. 4). It is important to note that
the results of our analysis of /rel (Sect. 3.3) were similar
using either (1) or (3). In fact, they did not change much
even when using the simple statistical methods we used
to generate starting values for the ®tting algorithm (see
below and in the Appendix). Using an algorithm that
can handle non-harmonic movement might, however, be
of signi®cance with more complex methods of analysis.

We used a least-squares ®t, weighted more in the
middle of the time window than on its edges (Fig. 3
shows that the curves usually ®t better in the middle of
the window). For a weight function, we used a Gaussian
with a standard deviation of three frames. Thus, a point
at a distance of, e.g., 9 frames (� 3 standard deviations)
from the considered point contributed almost nothing to
the shape of the curve. The algorithm was implemented
with the function ``NonlinearFit'' in the statistics pack-
age of Mathematica software (Wolfram Research Inc.
1993). Some technical considerations of implementing
the algorithm are discussed in the Appendix.

The angle at any frame of the time series is thus de-
composed into values of C, A, T, and F. Figure 3
(middle and bottom) shows an example of the computed
C, A, T, and F for one time-series. C and A are mea-
sured in degrees, T is measured in frames (1 frame � 1/
25 s), and F is measured in fractions of one cycle. The
algorithm gives F as moving from )0.5 to +0.5 (in
terms of radians, from )p to p; in terms of degrees, from
)180° to 180°). It is convenient to consider the modulo
of F, i.e., as moving from 0 to 1, where 1 is, of course,
equal again to 0.

Fig. 4A±F. Six examples of ``time win-
dows'' from the data (black dots), with the
best ®t curves generated by the FCAT
algorithm (line). The data point around
which the window was constructed is the
one in the center (i � 0). The width of the
windows is 21 frames � 0.84 s. The
values obtained for the four parameters
{C, A, T, F} of the curves in each window
are, respectively, in units of {degrees,
degrees, frames, cyles}: A {)15, 14, 15,
0.17}; B {)7, 65, 15, 0.38}; C {)19, 51, 26,
0.82}; D {)6, 68, 22, 0.15}; E {)7, 59, 21,
0.68}; F {)49, 16, 41, 0.62}
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When the movement is more or less periodic, C, A,
and T do not change much, while the phase descends
regularly [it descends rather than ascends because the
phase term in (1) appears with a minus sign instead of a
plus; this arbitrary de®nition was chosen so that the
phase would be truly analogous to the angle F in the
phase-plane (Fig. 2, bottom), which turns clockwise]. If
the movement of the segment is symmetrical relative to
its next caudal segment, then C � 0. If the oscillation of
the segment is asymmetrical, then C ¹ 10. Intuitively,
then, C represents the center around which the angle
oscillates, and A represents the range of movement
around this center. T represents the cycle period of the
movement, e.g., the time interval between peaks.

When there is little or no movement, A approaches
zero, and the entire term under the cosine in (1) and (3),
including T and F consequently becomes meaningless.
In graphical terms, when the amplitude of the time-series
is very small, it becomes more di�cult to measure the
period and the phase (see, for example, Fig. 4F). In these
situations, C equals the (unchanging) angle.

When the movement is not periodic but discrete, the
FCAT algorithm models it as half a cycle of a periodic
movement (see Fig. 4C,D). A typical discrete movement
is ballistic; i.e., the angle ®rst accelerates and then de-
celerates regularly. During this type of movement, A, C,
and T do not change much, while the phase descends
from 1 to 0.5 (if the segment moves to the right) or from
0.5 to 0 (if the segment moves to the left). As in periodic
movement, C represents the center of movement (where
angular velocity is the highest), A the movement's am-
plitude, and T its period (i.e., whether it was fast or
slow). If, after the movement, the segment remains
motionless, A vanishes, and T and F become meaning-
less again. The time window in Fig. 4E is centered
around a frame in which the movement stops, and the
amplitude starts to decline.

After the best-®t values of C, A, T, and F are ob-
tained, the estimated angle y in the considered frame is
given by (3) for i � 0. Figure 3 (top) shows the time
series of the measured angle (represented by the dots),
together with the estimated angle (solid line). It can be
seen that, due to the partial overlapping of time win-
dows centered on nearby frames, the algorithm produces

a good smoothing of the raw data. No other smoothing
was used.

Both the widths of the time window and the weight
function a�ect the results, and should therefore be
chosen with care. We chose a large enough window so
that the results were a�ected only by the weight func-
tion. A narrower weight function (higher weights to the
center of the window relative to its edges) produced
higher sensitivity to noise in the measurement of the
angle, while a wider weight function reduces sensitivity
to fast and short-term movements as well as to noise. An
intermediate width should therefore be chosen, based on
the frequency and noise of the measurement. We used a
Gaussian with a standard deviation of three frames, so
that movements shorter than about six frames (0.24 s)
were smoothed and not considered.

3.3 Results of /rel computation

In order to see the wave of /rel, we used a visualization
method we term a ``phase raster'' (Fig. 5). This can show
the time series of both phase and amplitude of all the
angles of the body at once. In the phase raster, each
angle was assigned a horizontal row, in which the phase
was coded by the circle of RGB colors: red for 0, green
for 1/3, blue for 2/3, and red again for 1 � 0. The
amplitude A was coded by the saturation of the color,
from 0 (colorless) to 1 (saturated). The amplitude was
normalized to units between 0 and 1 by dividing it by its
range. Such visual coding is appropriate because phase
(like color) is cyclic and has no meaning when the
amplitude (saturation) is zero or very small.

The angles are ordered, from bottom upwards, in the
order h, n,�, c, p, hh, which is a cephalo-caudal order for
the body angles. The foreleg angle � is inserted after the
neck angle n, and the hindleg angle hh is inserted after
the pelvis angle p. The four last angles, �, c, p, hh, are
then repeated again, replicating the respective bottom
rows. Such a representation shows traveling waves as
diagonal stripes of the same color. An upward diagonal
stripe indicates that the wave is cephalo-caudal. With
this speci®c arrangement of the rows, the stripes pattern
produced was continuous, and roughly two color cycles
were present for each moment from bottom to top, in-
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Fig. 5. A ``phase raster'' representing the free movement sequence shown in Fig. 2. The horizontal axis represents time (25 frames/s). Each of the
six angles h,n, �, c, p, hh is represented by a horizontal row. The phase is coded by the circle of RGB colors: red for phase 0, green for 1/3, blue for
2/3, and red again for phase 1 � 0. The amplitude A (normalized to units from 0 to 1 for each angle) is coded by the saturation of the color,
going from colorless (no movement) to saturated (maximal amplitude of movement). The angles are ordered, from bottom to top, in a cephalo-
caudal order, with the last four angles repeated again. See text for further explanation
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dicating the tendency to a constant wavelength. Since
two waves are simultaneously present with only four of
the six angles repeated, this means that the length of the
wave was a little less than one body length. Note that the
slope of the stripes varies, indicating faster or slower
waves, but the vertical distance between stripes of the
same color tends to be similar, so that two stripes are
vertically present.

The phase raster in Fig. 5 shows the same sequence
described in Fig. 2. Frames 0±20 represent forward
walking which has come to a stop, apparent as
the dwindling of color in frames 20±50, especially in the
foreleg (�) and hindleg (hh) rows. The left bending of
the head, neck and chest in frame 25 is seen as a small
diagonal wave in blue to green to yellow, apparent in
the rows of these angles, but lacking in the foreleg row
(because this bend did not involve stepping). This wave
continues in red to violet in frames 30±35 (with the
head) and 40±45 (when it reaches the chest), indicating a
movement to the right, back to a more or less straight
posture. At about frame 35, a pronounced bend to the
right (red to violet to blue) starts with the head and then
travels caudally, as the animal makes a tight right turn.
Note that the foreleg angle lags behind the chest, vio-
lating the regularity of the wave. This phenomenon was
typical of turns that started from a stop: stepping with
the forelegs was delayed, as they remained on the
ground after the body had already turned. We also
observed this phenomenon in rats, where it was espe-
cially evident during recovery from akinesia in lateral-
hypothalamic rats (the straightjacket phenomenon, see
Golani et al. 1979). The pronounced wave of the turn
continues with green to yellow to red, which marks
straightening and bending to the other side. Regular
waves then continue until the end of the sequence, in-
dicating forward walking.

As the phase F of each angle or ``joint'' can be
computed in every frame, the /rel of any two angles a, b
is simply their phase di�erence Fa-Fb, taken as modulo
1 (i.e., /rel of )0.2, for example, is the same as that of
0.8). The traveling wave pattern that was shown in the
phase raster suggests that /rel of successive segments is
stabilized to a speci®c value, as in the undulation
swimming of ®sh. In other words, at each moment in
time there is a similar di�erence between two adjacent
rows on the phase raster. As explained in the introduc-
tion, the hypothesis of a cephalo-caudal traveling wave
with a ®xed wavelength is equivalent to the hypothesis
that /rel between adjacent angles of the body is stabi-
lized to a little less than one cycle (i.e., a slight delay of
the more caudal angle). This hypothesis, which was il-
lustrated in Fig. 5, is tested on the pooled data from all
four animals in Fig. 6.

The ®rst horizontal row in Fig. 6 shows conditional
distributions of the /rel's between adjacent angles, as a
function of amplitude. The angle pairs between which
/rel was computed are, from the left, head angle to neck
angle, neck angle to chest angle, chest angle to pelvis
angle, foreleg angle to neck angle, and hindleg angle to
pelvis angle. The /rel (vertical axes), in units from 0 to 1,
is replicated twice on each axis, i.e., the top half of each

graph is identical to its bottom half. This representation
is used in order to highlight the continuity of /rel, since,
like phase itself, it is cyclic (phase 1 � phase 0, and a
short delay is the same as a long advance). A of each
angle pair (horizontal axes) was de®ned as the sum of
the angle amplitudes (for a justi®cation, see below).

Conditional densities are presented as contour maps,
with dark areas indicating high conditional densities and
light areas indicating low ones. The conditional densities
were computed by ®rst partitioning the data into equal
bins of A. This distribution is presented on the top of
each graph. Each bin of A was then partitioned into sub-
bins of /rel, and the number of points within each sub-
bin was divided by the total number of points in that
bin. The number of bins was chosen in each case as the
maximal number that still produced a smooth condi-
tional distribution. The range was chosen so that each
bin included at least 100 points. The number of sub-bins
was 10 (i.e., each sub-bin equals 0.1 cycles of /rel). Data
are pooled from four animals; n � 5797 points
(frames), which amount to 231 s and includes approxi-
mately 250 waves.

As expected, the left side of the distributions in the
®rst row shows less signi®cant preference for one value,
since as the amplitude approaches zero, the phase (and
consequently /rel) becomes meaningless. When the am-
plitude is considerable, however, there is a clear prefer-
ence, in all angle pairs, for one which in all cases is
smaller than 1 � 0 (in-phase) but clearly greater than
0.5 (anti-phase). Such a value corresponds to a short
delay in the second angle in the pair, relative to the ®rst.
The preferred /rel is similar through the whole range of
amplitudes that contained su�cient data to compute a
signi®cant distribution.

In small amplitudes, the preference for /rel � 0.5
(anti-phase) is probably an artifact created by mea-
surement errors of the markers' location, since such er-
rors would always a�ect adjacent angles in an opposite
way (increasing one angle and decreasing its neighbor).

The second row in Fig. 6 shows conditional distri-
butions of the same pairs of angles for the same data,
but this time as a function of the center of oscillation C.
As with the amplitudes, the center of oscillation for each
pair of angles is the sum of their C's. The distributions
clearly show that the preferred /rel changes little, if at
all, when the movement is asymmetrical to one side (C
distant from 0); i.e., bending and straightening are per-
formed with the same /rel as in bending to one side and
then bending to the other side.

Note that if, for example, the sum of C's of the head
and neck angles was 30°, this would mean that the sum
of these angles, or the angle of the head relative to the
chest, was 30° at the middle of the movement. At the
peak of the movement, however, the angle of the head
relative to the chest was 30° plus the sum of amplitudes
of the head angle and neck angle. This is, of course, true
only if both angles reach the middle or peak of their
movement at the same time, i.e., /rel � 0 � 1, while
usually (as shown by the /rel distributions) it is smaller.
This example, however, shows the rationale of adding
the A's and C's of successive angles.
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The third row in Fig. 6 shows the conditional distri-
butions of /rel for the same pairs of angles as a function
of the period T. The period of every pair of angles was
computed as the average of their periods. The range of T
in which enough data points were available for a signi-
®cant distribution was 0.25±1.0 s (7.5±25 frames). The
distribution shows that, through an increase of T (which
is the inverse of frequency) by the factor of 4, there is
little change, if at all, in the preferred /rel. This result is
similar to the situation in the undulation pattern of ®sh,
where /rel does not change at di�erent frequencies of
undulation (Grillner and Kashin 1976; Grillner et al.
1995).

4 Discussion

The results of this work suggest that a considerable part
of the ferret's free locomotor behavior (and, by impli-
cation, of both quadruped vertebrates and ®sh) may be
understood as a generalization of the traveling wave in
undulating ®sh. The generalization is suggested here in
three di�erent (albeit closely connected) directions:

1. In forward walking of quadruped vertebrates, the
lateral movement of the body axis consists of a

traveling wave with a typical phase lag, as in the
swimming of undulating ®sh;

2. Turning, in both quadrupeds and ®sh, consists of an
asymmetrical wave, with a similar phase lag;

3. In quadrupeds, the movement of the legs in the hor-
izontal plane while turning or walking can be con-
sidered as a part of this wave.

In the following, we will discuss each of these directions
separately, and comment on some other implications of
the results.

4.1 Traveling waves in forward locomotion
of ®sh and tetrapoda

Fish of the archetypal body forms, i.e., anguilliform and
carangiform, swim by means of lateral movements that
travel from head to tail in a wavelike manner. This
kinematic wave is due to a wave of muscle contractions
traveling down along each side of the body. The
wavelength of this traveling wave is stabilized to a ®xed
value of approximately one length of the body, across a
wide range of swimming speeds and frequencies (Grill-
ner and Kashin 1976). The exact value of the wavelength
is determined by the ®sh form. In anguilliforms like the

Fig. 6. Conditional distributions of /rel be-
tween adjacent angles, as a function of the
amplitude A (®rst row), center of oscillation
C (second row), and period T (third row). /rel

is computed between head angle and neck
angle (®rst column), neck angle and chest
angle (second column), chest angle and pelvis
angle (third column), neck angle and foreleg
angle (forth column), and pelvis angle and
hindleg angle (®fth column). /rel (vertical
axes) is in units from 0 to 1 � 0, and is
replicated twice to show the continuity of the
phase. For each pair of angles, the horizontal
axis represents the sum of their amplitudes
(®rst row), the sum of their centers of
oscillation (second row), or the average of
their periods (third row). Conditional densi-
ties are represented as contour maps, with
dark areas indicating high conditional densi-
ties and light areas indicating low conditional
densities. The conditional distributions were
computed by ®rst partitioning the data into
bins of A (or C or T). This distribution is
presented above each graph. Next, each bin
was partitioned into sub-bins of /rel, and the
number of data points within each sub-bin
was divided by the total number of points
within that bin. Data are pooled from four
animals; n � 5797 points (frames), which
amount to 231 s, comprising approximately
250 waves
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eel and the lamprey, it is only about 2/3 of body length
(i.e., there is more than one wave present at any time on
the body), but in species in which the body form is
shorter, the wavelength increases to one body length or
even more (for a review, see Wardle et al. 1995). The
®xed wavelength (within each species) implies that there
is a constant /rel, or a cephalo-caudal ``phase lag'',
between successive segments of the body.

The lateral movement of the body in walking of
tetrapoda is, in contrast, commonly thought of as in-
volving a standing wave, as in a vibrating string or an
elastic rod that is held at particular points (the ``nodes''
of the wave). In a standing wave, the nodes do not move
laterally at all. Between any two adjacent nodes, the
phase is the same (/rel between the segments is zero, so
there is no phase lag or advance), while over a node the
phase changes abruptly by half a cycle. In the phase
raster in Fig. 5, a standing wave would appear as a chess
pattern of the colors (rather than a diagonal pattern),
horizontally divided at the nodes. The notion that
walking in tetrapoda involves a standing wave is based
on studies of the newt (Roos 1964), the salamander
Ambystoma tigrinum (Frolich and Biewener 1992) and
some lizards (Gans 1975; Avery et al. 1987). These
studies led to the hypothesis that a major transition in
the central pattern generators for locomotion occurred
in the evolution of amniota (Bekkof 1985; Cohen 1988).
We are not aware of any previous work that has inves-
tigated this question in mammals.

In other studies, however, it was found that terrestrial
locomotion in other species of salamander (Edwards
1976, cited in Ritter 1992 and in Frolich and Biewener
1992) and lizards (Ritter 1992) involves a traveling wave,
especially at high velocities of walking. Our ®nding
shows that a traveling wave also coordinates lateral
bending in the walking of a mammal. As shown in
Fig. 5, the wavelength in the ferret is a little less than one
body-length (from nose to tail), which is, interestingly,
similar to that of the lamprey. Since walking is very
di�erent from swimming in biomechanical terms, this
similarity among the vertebrates is perhaps due to a
similar neural organization. Consequently, generalizing
the neural basis for locomotion from the lamprey's
spinal cord may be more straightforward than it has
seemed.

The evidence we present here for a traveling wave in a
mammal may not be conclusive, perhaps, since we
measured only ®ve points along the body (excluding the
tail) compared with the eight points of Ritter (1992) and
11 points of Frolich and Biewener (1992). Our method
of computing and visualizing the results is preferable,
however, because it can compute and show the phase lag
between any two points on the body (Fig. 6) and all
phase lags at once (Fig. 5). The two studies cited above
measured the amount of lateral displacement (and in
Ritter 1992 also the lateral velocity) of every point,
looking for the nodes which reveal the existence of a
standing wave. The nature of the wave was thus decided
by only one or two points on the body, rather than by
the pattern of all points. Further research is therefore
needed to clarify whether quadruped vertebrates in

general and mammals in particular use a traveling wave,
a standing wave, or both. In any case, analysis in terms
of /rel and use of the FCAT algorithm and phase rasters
shown here are likely to elucidate the pattern of lateral
bending.

4.2 Turning as asymmetrical locomotion

Gray (1968) stated that in the turn of an anguilliform
®sh, ``the amplitude of the wave of contraction which
passes along the body on the side towards which the
animal turns is greater than that on the other side of the
body.'' How exactly forward locomotion can be mod-
ulated into a turn is not clear from this statement. In
particular, does the asymmetrical wave of turning also
have a typical phase lag, and is it similar to the phase lag
of the forward wave?

Turning in ®sh was investigated mainly in the context
of a typical escape response, the C-start (e.g. Foreman
and Eaton 1993), so-called because of the shape of the
®sh's body as seen from above. This response provides
an important experimental model for the reticular con-
trol of the spinal cord. Unfortunately, most studies on
the C-start did not use anguilliform ®sh, in which the
traveling wave is easy to measure, but ®sh with a short
and stout body like the gold®sh or sun®sh (Lepomis sp.).
Furthermore, the C-start is a very fast response, which
means that resolution is poor not only in the phase di-
mension, but also in the time dimension. Most impor-
tant, the phase was always measured by the traditional
method of tracking points of maximum curvature along
the ®sh axis. This method measures the length, in per-
centage of body-length, between points of maximum
curvature (thereby actually measuring the inverse of the
phase lag, i.e., body length per unit of phase di�erence,
rather than the phase di�erence per unit of body length).
This method is accurate and convenient with forward
swimming, but not with turning. During a turn, the ®rst
wave of lateral bending can be seen by the point of
maximum curvature, but the following wave of
straightening cannot, since when the ®sh has a C-shape,
this wave should be measured by the point of minimum
curvature (instead of maximum curvature to the other
side, as in forward swimming). Consequently, Jayne and
Lauder (1993) were able to determine that at the time of
the C-start, all kinematic events move posteriorly, but
they did not measure the phase lag.

In contrast, in eel-like ®sh, the body is so elongated
that it preserves the typical S-shape even during most of
the turn, so that the phase lag can be determined by the
traditional method. Ullen et al. (1993) investigated the
response of river lampreys (Lampreta ¯uvialis L.) to il-
lumination, and also described their pattern of turning
(Fig. 7, taken directly from Fig. 2A in Ullen et al. 1993).
The points of maximum curvature are plotted in Fig. 8,
which is recreated with additions from Fig. 2B in Ullen
et al. (1993). As Ullen et al. reported, the turn (frames 0
to 15) included a ``turning wave'' that was slower than
the normal undulatory wave of forward swimming
(frames 15 to 18). What they did not state, however, is
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that the vertical distance between the lines in Fig. 8
(plotted in bold lines, our addition) is the same during
the turn and during the forward swimming. i.e., the
phase lag is the same. Note also that during frames 9 to
12, the phase lag could not be computed because the
lamprey assumed a true C-shape (Fig. 7), so that a point
of maximum curvature existed only on one side. By
using the FCAT algorithm, the phase lag during this
time could have been determined as well.

It seems, therefore, that in both ferrets and lampreys,
turning is generated with the same phase-lag as in for-
ward walking. A thorough veri®cation of this hypothesis
is still necessary, however, for the lamprey. In both
cases, a turn can be modeled by changing a single pa-
rameter, the center of oscillation C. It is interesting to
note that the neural-mechanical model for lamprey
swimming by Ekeberg (1993) also produces turning by
asymmetric tonic stimulation, which causes an asym-
metrical wave with a similar phase-lag (as can be judged
from Fig. 6 in Ekeberg 1993). But although the turn
seems similar to that of the real lamprey, to our know-
ledge this similarity has not been tested yet. Further-
more, since Ekeberg's model depends on the detailed
neurophysiology and biomechanics of the lamprey, it
cannot be applied directly to mammals or reptiles, nor,
for that matter, to other ®sh.

4.3 Participation of the legs in the wave

In this study, we considered the two forelegs together as
one ``virtual'' segment, and measured its /rel in reference
to the chest. In a similar way, the hindlegs were
considered as one virtual segment whose /rel was
measured relative to the pelvis. This choice might seem
arbitrary: would it not be preferable to consider each leg
as a separate segment? And why not connect the
ipsilateral or diagonal legs?

We chose not to consider each leg separately because,
when turning from a standing position the ferret might
start with a step backward with the inside (relative to the
direction of turning) foreleg, or with a step forward with
the outside foreleg, with no apparent preference. If the
forelegs are considered as one segment connecting the
paws, these two cases become equivalent. The same is
true for the hindlegs. Considering the two forelegs to-
gether and the two hindlegs together enabled us to en-
visage their movement as part of the cephalo-caudal
wave propagation in the phase raster, because if the
movement includes only the anterior part of the body,
the forelegs might step while the hindlegs remain an-
chored in place.

Clearly, the leg movement is far from being fully ex-
plained by the wave. By measuring only the (two-di-
mensional) location of the feet we ignored the vertical
components of the leg movement. We also ignored the
distance between the feet. The lateral component of
stepping in vertebrates has been only partly investigated
(Golani et al. 1979; Szechtman et al. 1985; Eilam and
Golani 1988; Cools et al. 1989). Turning in ferrets (and
in rats, see Szechtman et al. 1985; Kafka® et al. 1996)
may also change the diagonal order of stepping, e.g.,
eliminating the outside hindleg, and subsequently both
hindlegs stepping as the turn becomes tight. These
changes may be referred to as ``subgaits'', and the notion
of phase transitions may be used to investigate them, as
has been done with ordinary gaits (Schoner et al. 1990;
Collins and Stewart 1993); e.g., the radius of the turn or
some similar property may be shown to serve as a
``control parameter'' that induces bifurcations in the
dynamics of stepping.

Fig. 7. A turn of a river lamprey (Lampreta ¯uvialis L.), evoked by
illumination of one side of the body. The illustration was taken from
Fig. 2A in Ullen et al. (1993). Arabic numerals indicate frame
numbers. Roman numerals indicate points of maximum curvature of
the body. The ``turning wave'' is designated by III

Fig. 8. The cephalo-caudal waves of curva-
ture maxima during the turn shown in
Fig. 7, recreated with additions from
Fig. 2B in Ullen et al. (1993). Thin lines
(waves) connect points of maximum curva-
ture on the body. They are marked by the
same Roman numerals as in Fig. 7. Bold
lines indicate the distances, in percentage
body-length, between any two adjacent
waves (the vertical distance between adja-
cent thin lines)
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Although all these aspects were ignored in this study,
our results nevertheless show the similarity between the
legs and the parts of the body: both show the indepen-
dence of /rel of C (and of A and T, but these results were
expected, perhaps, for the legs; Fig. 6). This is consistent
with the insight gained by the paradigm of coordination
dynamics, according to which stable phase relationships
are likely to arise in a complex system of coupled os-
cillators, regardless of the way the system variables are
de®ned.

4.4 /rel dynamics and patterns of free behavior

The motivation behind this study was to establish a
model of natural patterns of free behavior. In the
behavioral neurosciences, it is still mostly impossible to
de®ne the basic units of free whole-animal behavior in
an objective and autonomic way. By ``objective'' we
mean that the de®nition and recognition of the pattern
are formal and can be done without the subjective
decision of an experienced observer, ``as in judging a
work of art'' (Beer 1980). By ``autonomic'' we mean that
the de®nition and recognition of the pattern can be
accomplished solely on the basis of the morphology of
behavior (i.e., movements and their coordination) and
do not require outside considerations such as the
assumed functions of the pattern, its mediating neural
basis, or its evolutionary causes.

This problem of objective and autonomic de®nition of
behavior patterns, especially in free behavior, has been
avoided for a long time in all the disciplines of behavioral
neuroscience, because of the patterns' inherent complex-
ity and their many degrees of freedom (for a discussion of
this problem see Golani 1992; Golani and Kafka® 1998).
Recently, however, advances in the ®eld of coordination
dynamics suggested that this complexity may be ex-
plained by dynamical system models of coupled oscilla-
tors (e.g., Haken et al. 1985; Schoner et al. 1990; Turvey
1990; Yuasa and Ito 1990; Collins and Stewart 1993;
Kelso 1995; Kafka® et al. 1996). In most of these models,
the /rel of concurrent movements (or some similar ex-
pression) is the key variable. This study shows that the
/rel notion can be applied to free behavior. Based on its
stability, it may be possible to construct dynamical
models that reproduce, for example, the sequence of free
movement shown in Fig. 2, with all its many degrees of
freedom, using only a few variables and parameters.

This study could not have been done without devel-
oping the FCAT algorithm, which makes it possible to
compute the /rel between any two movements, whether
periodic or discrete. The modeling of every movement as
a locally periodic movement may seem to be based on a
far-fetched assumption. It is therefore important to
stress that it is not meant here as a model for movement
planning or execution in the motor system. It is only
meant as the simplest model required for applying /rel

measurements under free movement conditions. None-
theless, treating discrete movements as half a limit cycle
has been suggested by Schoner (1990, 1994) in his model
for trajectory formation.

Several obstacles need to be overcome before a (two-
dimensional) model for free locomotor behavior in the
ferret can be constructed. This study demonstrates the
statistical stability of /rel, which suggests that it might be
a controlled variable. Its moment-to-moment dynamics,
however, remains to be studied. This can be done by
coordination dynamics methods such as return maps
(see, e.g., Kelso 1995; Kafka® et al. 1996). The e�ect of
C, A, and T on /rel dynamics should be investigated. It is
also possible that these or other parameters may induce
bifurcations (phase transitions, see Haken et al. 1985) in
/rel dynamics. Such bifurcations might explain, for ex-
ample, a transition from a traveling to a standing wave
pattern, should such a pattern be found.

In this study, each degree of freedom (i.e., every angle
between the segments) was decomposed into four com-
ponents, which might not seem to be moving in the di-
rection of reducing the number of variables. Such
decomposition is partially justi®ed, however, because it
shows that the phase components of all angles are
closely related, thus assisting in reducing the actual
number of degrees of freedom. It still remains to be
examined whether the other components of each angle,
A, C, and T, are also related across angles. Finally, all
the variables in this study were de®ned in a body-related
reference frame, while there is no doubt that variables in
the absolute reference frame, e.g., the animal's direction
and speed, are also important. We are now investigating
these questions.
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Appendix: technical considerations of implementing
the FCAT algorithm

The FCAT algorithm is based on optimization of the parameters
C, A, T, and F in (3) in order to yield the best ®t to the data within
the ``time window'' which is constructed around each data point.
The optimization is done in such a way as to minimize the
(weighted) sum of the squared di�erences between estimated and
actual data (least-square optimization). The algorithm was imple-
mented with the ``NonlinearFit'' function in the statistics package
of Mathematica software (Wolfram Research Inc. 1993).

With this implementation the NonlinearFit function requires
reasonable start values for C, A, T, and F, or it might lock on some
unreasonably distant values which produce a local minimum of the
sum of the squares. Such start values can easily be obtained by
simple statistical methods. We found that in most cases the average
of the data points in the considered time window yielded a good
estimation of C, and their standard deviation yielded a good esti-
mation of A. For these estimations, the size of the time window
should be of the order of the typical period of cycles in the time
series.

T and F can also be estimated by computing the angular ve-
locity, or the ®rst derivative of the time series (by subtracting each
data point from its next neighbor). T is estimated by 2p/x, where x
is the ratio between the standard deviation of the velocities and the
standard deviation of the angles in the time window. F is estimated
by:
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where bC and bT are the (previously computed) estimates for C and T
in that window, a(i) and v(i) are the angle and the angular velocity
at the considered frame i (around which the time window is cen-
tered), and arctan(x,y) is the arc tangent of y/x, taking into con-
sideration the quadrant in which the point (x,y) is located.

If the data have a high level of noise, it might be necessary to
smooth the time series and the computed velocity. Smoothing,
however, reduces the standard deviations of the angles and of the
angular velocities in the time window, which are needed to estimate
A and T. In this case, it may be necessary to increase the standard
deviations by a certain factor in order to detain good estimates.
Additional improvements to the estimation process may be added,
and their validity can be assessed by comparing the resulting cosine
curve to the data.

In the very few cases in which the NonlinearFit function,
starting from the above estimates, could not lock onto reasonable
values, we chose the start value ourselves, by visually estimating the
®t of the resulting cosine curve. Most of the time, however, these
estimates were close enough to the ®nal parameter values achieved
by the best ®t, so that the visualization and statistical analysis we
describe in the results section yielded similar results with each.
Since computing only the estimates is much faster than computing
the best ®t (by one to two orders of magnitude, depending on the
window's width), it may be advisable to use only the estimates,
especially when dealing with a large amount of data.
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